để hai đường thẳng song song

Giáo Án Bài Hai Đường Thẳng Chéo Nhau Và Hai Đường Thẳng Song Song Giáo án hình học bài Hai Đường Thẳng Chéo Nhau Và Hai Đường Thẳng Song Song lớp 11CB: Biết vận dụng các định lí để giải các bài toán đơn giản (xác định giao tuyến hai mặt phẳng trong một số trường Cho hai đường thẳng song song (a) và (b), một đường thẳng (c) vuông góc với hai đường thẳng kia. Có bao nhiêu phép đối xứng trục biến mỗi đường thẳng đó thành chính nó? 1. Tính xác suất để cả hai lần bốc đều là bi đỏ? 4/25. Other sets by this creator. 1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó. 2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất. 3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm. 4. Phép đối xứng tâm biến Gọi giao điểm của đường thẳng (d 3 d 3) với (d 1 d 1) và (d 2 d 2) theo thứ tự là A và B. Tìm tọa độ của A, B. Cho đường thẳng y = (m - 2)x + n (m ≠ ≠ 2). (d) Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 1 - √2 2 và cắt trục hoành tại điểm có hoành độ 2 Previous Post Previous post: Một âm thoa có tần số dao động riêng 850 Hz được đặt sát miệng một ống nghiệm hình trụ đáy kín đặt thẳng đứng cao 80 cm. Đổ dần nước vào ống nghiệm thấy có n vị trí âm được khuếch đại lên mạnh nhất, trong đó có vị trí mà mực nước cao 30 cm. Biết tốc độ truyền âm trong hadits tentang pemuda masa kini pemimpin masa depan. Bài viết trình bày định nghĩa, phương pháp chứng hai đường thẳng song song trong không gian và một số ví dụ minh họa điển hình, đây là dạng toán thường gặp trong chương trình Hình học 11 chương 2 đường thẳng và mặt phẳng trong không gian, quan hệ song nghĩa Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm pháp chứng minh hai đường thẳng song song Để chứng minh hai đường thẳng song song trong không gian, ta sử dụng một trong các cách sau đây + Cách 1. Chứng minh chúng đồng phẳng rồi sử dụng các định lí đường trung bình, Thales đảo … quen thuộc trong hình học phẳng. + Cách 2. Chứng minh chúng cùng song song với đường thẳng thứ ba. + Cách 3. Dùng hệ quả Nếu hai mặt phẳng cắt nhau lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng song song hoặc trùng với một trong hai đường thẳng dụ minh họa Ví dụ 1 Cho hình chóp $ có đáy $ABCD$ là hình bình hành. a Tìm giao tuyến của hai mặt phẳng $SAB$ và $SCD.$ b Đường thẳng qua $D$ và song song $SC$ cắt mặt phẳng $SAB$ tại $I.$ Chứng minh $AI$ song song $SB.$a Mặt phẳng $SAB$ chứa $AB$, mặt phẳng $SCD$ chứa $CD$ mà $AB // CD$ nên $St = mp SCD ∩ mp SAB$ với $St // AB // CD.$ b Trong mặt phẳng $SCD$, đường thẳng qua $D$ và song song $SC$ cắt $St$ tại $I.$ Do $St ⊂ mp SAB$ $⇒I ∈ mp SAB.$ Ta có $SI // CD$ và $SC // DI$ nên $SIDC$ là hình bình hành. Do đó $SI // = CD.$ Mà $CD // = AB$ nên $SI // = AB.$ Tứ giác $SIAB$ là hình bình hành nên $AI // SB.$Ví dụ 2 Cho hình chóp $ có đáy $ABCD$ là hình thang với $AB$ song song $CD$ và $AB > CD.$ Gọi $M$, $N$ lần lượt là trung điểm $SA$, $SB.$ a Chứng minh $MN$ song song $CD.$ b Tìm giao điểm $J$ của $SC$ và mặt phẳng $ADN.$ c $AN$ và $DJ$ cắt nhau tại $I$. Chứng minh $SI // AB$ và $SA // IB.$a Ta có $MN$ là đường trung bình của tam giác $SAB$ nên $MN // AB$, mà $AB // CD$ nên $MN // CD.$ b Trong mặt phẳng $ABCD$, $AD$ cắt $BC$ tại $E.$ Trong mặt phẳng $SBC$, $NE$ cắt $SC$ tại $J.$ $J ∈ NE$ $⇒ J ∈ mp ADN.$ Vậy $J$ là giao điểm $SC$ và $ADN.$ c Ta có $AB ⊂ mp SAB.$ $CD ⊂ mp SCD.$ $AB // CD.$ $SI$ là giao tuyến của mặt phẳng $SAB$ và mặt phẳng $SCD.$ Vậy $SI // AB // CD.$ Ta có $SI // MN$ vì cùng song song với $AB$, mà $M$ là trung điểm $SA$ nên $MN$ là đường trung bình của tam giác $ASI.$ Do đó $\overrightarrow {SI} = 2\overrightarrow {MN} $ mà $\overrightarrow {AB} = 2\overrightarrow {MN} $ nên $\overrightarrow {SI} = \overrightarrow {AB} .$ Vậy $ABIS$ là hình bình hành, suy ra $SA // IB.$Ví dụ 3 Cho tứ diện $ABCD.$ Gọi $A_1$, $B_1$, $C_1$, $D_1$ lần lượt là trọng tâm các $ΔBCD$, $ΔACD$, $ΔABD$, $ΔABC.$ Gọi $G$ là giao điểm $AA_1$ và $BB_1.$ Chứng minh a $\frac{{AG}}{{A{A_1}}} = \frac{3}{4}.$ b $AA_1$, $BB_1$, $CC_1$ đồng Gọi $I$ là trung điểm $CD.$ Trên mặt phẳng $IAB$, ta có $\frac{{I{B_1}}}{{IA}} = \frac{{I{A_1}}}{{IB}} = \frac{1}{3}$ $ \Rightarrow {A_1}{B_1}//AB$ và $\frac{{{A_1}{B_1}}}{{AB}} = \frac{1}{3}.$ $ \Rightarrow \frac{{GA}}{{G{A_1}}} = \frac{{AB}}{{{A_1}{B_1}}} = 3$ $ \Rightarrow \frac{{GA}}{{G{A_1} + GA}} = \frac{3}{{3 + 1}} = \frac{{AG}}{{A{A_1}}}$ $1.$ b Tương tự, gọi ${G’} = A{A_1} \cap D{D_1}$, ta có $\frac{{G’A}}{{A{A_1}}} = \frac{3}{4}$ $2.$ Tương tự, gọi $G” = A{A_1} \cap C{C_1}$, ta có $\frac{{G”A}}{{A{A_1}}} = \frac{3}{4}$ $3.$ Từ $1$, $2$ và $3$, suy ra $\frac{{G’A}}{{A{A_1}}} = \frac{{G”A}}{{A{A_1}}} = \frac{{GA}}{{A{A_1}}}$ $ \Rightarrow G \equiv G’ \equiv G”.$Ví dụ 4 Cho hình chóp $ có đáy $ABCD$ là hình bình hành. Lấy $M$, $N$, $P$, $Q$ lần lượt trên $BC$, $SC$, $SD$, $AD$ sao cho $MN // SB$, $NP // CD$, $MQ // AB.$ a Chứng minh $PQ // SA.$ b Gọi $K$ là giao điểm $MN$ và $PQ.$ Chứng minh $SK // AD // BC.$a Do $MQ//AB \Rightarrow \frac{{DQ}}{{DA}} = \frac{{CM}}{{CB}}$ $1.$ Do $MN//SB \Rightarrow \frac{{CM}}{{CB}} = \frac{{CN}}{{CS}}$ $2.$ Do $NP//CD \Rightarrow \frac{{CN}}{{CS}} = \frac{{DP}}{{DS}}$ $3.$ Từ $1$, $2$ và $3$, suy ra $\frac{{DQ}}{{DA}} = \frac{{DP}}{{DS}}$ $ \Rightarrow PQ///SA.$ b Mặt phẳng $SAD$ và $SBC$ đã có chung điểm $S.$ $K \in NM \Rightarrow K \in SBC.$ $K \in PQ \Rightarrow K \in SAD.$ Vậy $SK = SAD \cap SBC.$ Ta có $AD \subset SAD$, $BC \subset SBC$, mà $AD//BC.$ Vậy $SK = SAD \cap SBC$ thì $SK//AD//BC.$Ví dụ 5 Cho hình chóp $ có $ABCD$ là hình bình hành tâm $O$. Gọi $M$ và $N$ lần lượt là trung điểm của $SC$ và $OB.$ Gọi $I$ là giao điểm của $SD$ và mặt phẳng $AMN.$ Tính tỉ số $\frac{{SI}}{{ID}}.$Trong mặt phẳng $ABCD$, gọi $E$ và $F$ là giao điểm của $AN$ với $CD$ và $BC.$ Trong mặt phẳng $SCD$, gọi $I$ là giao điểm của $EM$ và $SD.$ $I ∈ ME$ $⇒ I ∈ mp AMN.$ Vậy $I$ là giao điểm của $SD$ và mặt phẳng $AMN.$ Ta có $BF//AD$ $ \Rightarrow \frac{{BF}}{{AD}} = \frac{{NB}}{{ND}}$ $ = \frac{{\frac{1}{2}OB}}{{OD + \frac{1}{2}OB}} = \frac{{\frac{1}{2}OB}}{{\frac{3}{2}OB}} = \frac{1}{3}$ $ \Rightarrow BF = \frac{1}{3}AD$ $ \Rightarrow CF = \frac{2}{3}AD.$ Ta có $CF//AD$ $ \Rightarrow \frac{{EC}}{{ED}} = \frac{{CF}}{{AD}} = \frac{2}{3}.$ Trong mặt phẳng $SCD$ vẽ $CJ//SD$ $J \in EI$. Ta có $\frac{{JC}}{{ID}} = \frac{{EC}}{{ED}} = \frac{2}{3}$ $1.$ $JC//SI$ $ \Rightarrow \frac{{CJ}}{{SI}} = \frac{{MC}}{{MS}} = 1$ $ \Rightarrow CJ = SI$ $2.$ Từ $1$ và $2$ suy ra $\frac{{SI}}{{ID}} = \frac{2}{3}.$Ví dụ 6 Cho hình lập phương $ cạnh $a.$ Gọi $M$, $N$, $P$, $Q$ lần lượt là trung điểm của $A’B’$, $C’B’$, $CC’$, $AA’.$ a Chứng minh tứ giác $MNPQ$ là hình thang cân. b Tính chu vi và diện tích tứ giác $MNPQ$ theo $a.$a Ta có $MN$ là đường trung bình của tam giác $A’B’C’$ nên $MN//A’C’$ $1.$ Ta có $\overrightarrow {A’Q} = \frac{1}{2}\overrightarrow {A’A} $ và $\overrightarrow {C’P} = \frac{1}{2}\overrightarrow {C’C} .$ Mà $\overrightarrow {A’A} = \overrightarrow {C’C} $ nên $\overrightarrow {A’Q} = \overrightarrow {C’P} .$ Do đó $A’QPC’$ là hình bình hành nên $PQ // A’C’$ $2.$ Từ $1$ và $2$ suy ra $PQ//MN.$ Ta có $\Delta A’MQ = \Delta C’PN$ $ \Rightarrow MQ = NP.$ Vẽ $MH$ và $NK$ vuông góc với $PQ.$ Ta có $\Delta MHQ = \Delta NKP$ nên $\widehat {MQH} = \widehat {NPK}.$ Do đó $MNPQ$ là hình thang Ta có $MN = \frac{{A’C’}}{2} = \frac{{a\sqrt 2 }}{2}.$ $PQ = A’C’ = a\sqrt 2 .$ $NP = MQ = \frac{a}{2}\sqrt 2 .$ Do đó chu vi tứ giác $MNPQ$ là $\frac{{a\sqrt 2 }}{2} + a\sqrt 2 + 2\left {\frac{a}{2}\sqrt 2 } \right = \frac{{5a\sqrt 2 }}{2}.$ Do $\Delta MQH = \Delta NKP$ nên $HQ = KP.$ Vậy $KP = QH = \frac{1}{2}PQ – HK$ $ = \frac{1}{2}PQ – MN$ $ = \frac{1}{2}\left {a\sqrt 2 – \frac{{a\sqrt 2 }}{2}} \right = \frac{{a\sqrt 2 }}{4}.$ Do tam giác $NPK$ vuông $ \Rightarrow N{K^2} = N{P^2} – K{P^2}$ $ = \frac{{{a^2}}}{2} – \frac{{{a^2}}}{8} = \frac{{6{a^2}}}{{16}}.$ Vậy diện tích tứ giác $MNPQ$ là $\frac{1}{2}NKMN + PQ$ $ = \frac{{a\sqrt 6 }}{8}\left {\frac{{a\sqrt 2 }}{2} + a\sqrt 2 } \right = \frac{{3{a^2}\sqrt 3 }}{8}.$Ví dụ 7 Cho tam giác $ABC$ nằm trong mặt phẳng $α.$ Gọi $Bx$, $Cy$ là hai nửa đường thẳng song song nằm về cùng phía đối với mặt phẳng $α.$ Gọi $M$ và $N$ là hai điểm di động trên $Bx$, $Cy$ sao cho $CN = 2BM.$ a Chứng minh $MN$ luôn qua một điểm cố định $I$ khi $M$, $N$ di động. b Lấy $E$ thuộc đoạn $AM$ với $EM = \frac{1}{3}AE$, $IE$ cắt $AN$ tại $F$, $BE$ cắt $CF$ tại $Q.$ Chứng minh $AQ$ song song $Bx$ và $Cy$, và mặt phẳng $QMN$ chứa một đường thẳng cố định khi $M$, $N$ di Trong mặt phẳng $Bx, Cy$, gọi $I$ là giao điểm của $MN$ và $BC.$ Do $MB // NC$ nên $\frac{{IB}}{{IC}} = \frac{{MB}}{{NC}} = \frac{1}{2}$ $ \Rightarrow IB = 2IC$, suy ra $B$ là trung điểm $IC.$ Vậy $MN$ di động luôn qua $I$ cố định. b Ta có $Q \in BE \Rightarrow Q \in mpABM.$ $Q \in CF \Rightarrow Q \in mpANC.$ Vậy $AQ = mp ABM ∩ mp ANC.$ Mà hai mặt phẳng $ABM$ và mặt phẳng $ANC$ lần lượt chứa hai đường thẳng song song $BM$ và $NC.$ Do đó $AQ // BM // NC.$ Ta có $MB // AQ$ $ \Rightarrow \frac{{MB}}{{AQ}} = \frac{{EM}}{{EA}} = \frac{1}{3}.$ Gọi $K$ là giao điểm của $MQ$ và $BA$ ta có $\frac{{KB}}{{KA}} = \frac{{MB}}{{AQ}} = \frac{1}{3}$ $ \Rightarrow KB = \frac{1}{3}KA.$ Vậy $K$ cố định. Ta có $K ∈ MQ ⇒ K ∈ mp MNQ.$ $I ∈ MN ⇒ I∈ mp MNQ.$ Do đó mặt phẳng $QMN$ di động nhưng luôn chứa đường thẳng cố định $IK.$ [ads] Ví dụ 8 Cho tam giác $ABC.$ Từ $A$, $B$, $C$ vẽ các nửa đường thẳng song song cùng chiều $Ax$, $By$, $Cz$ không nằm trong mặt phẳng $ABC.$ Trên $Ax$, $By$, $Cz$ lần lượt lấy đoạn $AA’ = a$, $BB’ = b$, $CC’ = c.$ Gọi $I$, $J$, $K$ lần lượt là giao điểm $B’C’$, $A’C’$, $A’B’$ với mặt phẳng $ABC.$ Gọi $G$, $G’$ là trọng tâm tam giác $ABC$ và tam giác $A’B’C’.$ a Chứng minh $\frac{{IB}}{{IC}} \cdot \frac{{JC}}{{JA}} \cdot \frac{{KA}}{{KB}} = 1.$ b Chứng minh $GG’ // AA’.$ Tính $GG’$ theo $a$, $b$, $c.$Ta có $CC’//BB’ \Rightarrow \frac{{IB}}{{IC}} = \frac{{BB’}}{{CC’}} = \frac{b}{c}.$ $CC’//AA’ \Rightarrow \frac{{JC}}{{JA}} = \frac{{CC’}}{{AA’}} = \frac{c}{a}.$ $AA’//BB’ \Rightarrow \frac{{KA}}{{KB}} = \frac{{AA’}}{{BB’}} = \frac{a}{b}.$ Do đó $\frac{{IB}}{{IC}} \cdot \frac{{JC}}{{JA}} \cdot \frac{{KA}}{{KB}} = \frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b} = 1.$ b Gọi $H$, $H’$ là trung điểm $CB$ và $C’B’.$ $HH’$ là đường trung bình của hình thang $CC’B’B$ nên $HH’//BB’//AA’//CC’$ $1.$ $G$ là trọng tâm tam giác $ABC$ $ \Rightarrow \frac{{AG}}{{AH}} = \frac{2}{3}.$ $G’$ là trọng tâm tam giác $A’B’C’$ $ \Rightarrow \frac{{A’G’}}{{A’H’}} = \frac{2}{3}.$ Vậy $\frac{{AG}}{{AH}} = \frac{{A’G’}}{{A’H’}} \Rightarrow GG’//HH’$ $2.$ Từ $1$ và $2$ suy ra $GG’//AA’.$ Gọi $M$ là giao điểm $AH’$ và $GG’.$ Ta có $G’M//AA’ \Rightarrow \frac{{G’M}}{{AA’}} = \frac{{H’G’}}{{H’A’}} = \frac{1}{3}$ $ \Rightarrow G’M’ = \frac{a}{3}.$ Ta có $MG//HH’ \Rightarrow \frac{{MG}}{{HH’}} = \frac{{AG}}{{AH}} = \frac{2}{3}$ $ \Rightarrow MG = \frac{2}{3}HH’$ $ = \frac{2}{3}\frac{{BB’ + CC’}}{2} = \frac{{b + c}}{3}.$ Do đó $GG’ = MG’ + MG = \frac{{a + b + c}}{3}.$Ví dụ 9 Cho hình chóp $ có đáy là hình thang $ABCD$ với đáy $AD$ và $BC$ có $AD = a$, $BC = b$ với $a > b.$ Gọi $I$ và $J$ lần lượt là trọng tâm $ΔSAD$, $ΔSBC$, $SB$ và $SC$ cắt mặt phẳng $ADJ$ tại $M$, $N$, $SA$, $SD$ cắt mặt phẳng $BCI$ tại $P$, $Q.$ a Chứng minh $MN$ song song $PQ.$ b Giả sử $AM$ cắt $BP$ tại $E$, $CQ$ cắt $DN$ tại $F.$ Chứng minh $EF$ song song $MN$ và $PQ.$ Tính $EF$ theo $a$ và $b.$a Ta có $I \in IBC \cap SAD.$ Ta có $\left. {\begin{array}{*{20}{l}} {AD//BC}\\ {AD \subset SAD}\\ {BC \subset IBC} \end{array}} \right\}$ $ \Rightarrow SAD \cap IBC = PQ.$ Với $I∈PQ$ và $PQ//AD//BC.$ Tương tự $J \in JAD \cap SBC.$ $\left. {\begin{array}{*{20}{l}} {AD//BC}\\ {AD \subset JAD}\\ {BC \subset SBC} \end{array}} \right\}$ $ \Rightarrow JAD \cap SBC = MN.$ Với $J \in MN$ và $MN//AD//BC.$ Do đó $MN//PQ.$ b Ta có $\left. {\begin{array}{*{20}{l}} {\mathop E\limits^. \in AM \Rightarrow E \in AMND}\\ {E \in PQ \Rightarrow E \in BPCQ} \end{array}} \right\}$ $ \Rightarrow E \in AMND \cap BPCQ.$ Ta có $\left. {\begin{array}{*{20}{l}} {F \in DN \Rightarrow F \in AMND}\\ {F \in CQ \Rightarrow E \in BPCQ} \end{array}} \right\}$ $ \Rightarrow F \in AMND \cap BPCQ.$ Vậy $EF = AMND \cap BPCQ.$ Ta có $\left. {\begin{array}{*{20}{l}} {MN \subset AMND}\\ {PQ \subset BPCQ}\\ {MN//PQ} \end{array}} \right\}$ $ \Rightarrow EF//PQ//MN.$ Gọi $K$ là giao điểm $EF$ và $PC.$ Ta có $EK//BC$ $ \Rightarrow \frac{{KE}}{{BC}} = \frac{{PE}}{{PB}}.$ Do $I$ là trọng tâm tam giác $SAD$ và $PI//AD$ $ \Rightarrow \frac{{SP}}{{AS}} = \frac{2}{3}.$ Do $J$ là trọng tâm tam giác $SBC$ và $MJ//BC$ $ \Rightarrow \frac{{SM}}{{SB}} = \frac{2}{3}.$ Do đó $\frac{{SP}}{{SA}} = \frac{{SM}}{{SB}} = \frac{2}{3}$ $ \Rightarrow PM//AB$ $ \Rightarrow \frac{{PE}}{{EB}} = \frac{{PM}}{{AB}}.$ Mà $\frac{{PM}}{{AB}} = \frac{{SP}}{{SA}} = \frac{2}{3}.$ Do đó $\frac{{PE}}{{EB}} = \frac{2}{3}$ $ \Rightarrow \frac{{EK}}{{BC}} = \frac{{PE}}{{PB}} = \frac{{PE}}{{PE + EB}}$ $ = \frac{1}{{1 + \frac{{EB}}{{PE}}}} = \frac{1}{{1 + \frac{3}{2}}} = \frac{2}{5}$ $ \Rightarrow EK = \frac{2}{5}BC = \frac{2}{5}b.$ Tương tự $KF = \frac{2}{5}a.$ Vậy $EF = EK + KF = \frac{2}{5}a + b.$Bài tập tự luyện Bài tập 1 Cho tứ diện $ABCD.$ Gọi $M$, $N$, $P$, $Q$, $R$, $S$ lần lượt là trung điểm của $AB$, $CD$, $BC$, $AD$, $AC$, $BD.$ a Chứng minh $MNPQ$ là hình bình hành. b Chứng minh $MN$, $PQ$, $RS$ cắt nhau tại trung điểm của mỗi tập 2 Cho hình chóp $ có đáy $ABCD$ là hình thang có cạnh bên $AD$, $BC.$ a Xác định giao tuyến $d$ của $SAB$ và $SCD.$ b Gọi $M$, $N$ lần lượt là trọng tâm của tam giác $SAD$ và $SBC.$ Chứng minh $d // MN.$Bài tập 3 Cho hai hình bình hành $ABCD$, $ABEF$ không cùng nằm trên một mặt phẳng. a Chứng minh $CE // DF.$ b Gọi $M$, $N$ là hai điểm trên $AC$, $AD$ sao cho $\frac{{AM}}{{AC}} = \frac{{AN}}{{AD}} = m.$ Gọi $H$, $K$ là hai điểm trên $BF$ và $AF$ sao cho $\frac{{FK}}{{FA}} = \frac{{FL}}{{FB}} = n$ với $m,n \in 0;1$. Chứng minh $MN // KL.$ c Cho $m = \frac{2}{5}$ và $n = \frac{3}{5}$. Chứng minh $NK // DF.$Bài tập 4 Cho tứ diện $ABCD.$ Gọi $P$, $Q$ lần lượt là trung điểm của $AC$, $BC.$ Gọi $R$ là điểm trên $BD$ sao cho $BR = 2RD.$ a Xác định $E$, $F$ là giao điểm của $RPQ$ với $CD$, $AD.$ b Tìm giao tuyến của $PQR$ và $ABE.$ c Chứng minh $R$, $F$ lần lượt là trọng tâm của tam giác $BCE$ và $ACE.$ d Chứng minh $FR // PQ.$ e Tính tỉ số diện tích mà mặt phẳng $PQR$ chia cắt tam giác $ACD.$Bài tập 5 Cho hình chóp $ có $ABCD$ là hình bình hành tâm $O.$ Gọi $M$, $N$ lần lượt là trung điểm của $SC$, $OB.$ a Tìm giao điểm $I$ của $SD$ và $AMN.$ b Tính $\frac{{SI}}{{ID}}.$Bài tập 6 Cho hình chóp $ có đáy là tứ giác lồi, $O$ là giao điểm của $AC$ và $BD.$ Gọi $M$, $N$, $E$, $F$ lần lượt là trung điểm của $SA$, $SB$, $SC$, $SD.$ Chứng minh a $ME // AC$ và $NF // BD.$ b Ba đường thẳng $EM$, $NF$, $SO$ đồng quy. c Bốn điểm $M$, $N$, $E$, $F$ đồng tập 7 Cho hình chóp $ có đáy là hình chữ nhật. Gọi $M$, $N$, $E$, $F$ lần lượt là trọng tâm của tam giác $SAB$, $SBC$, $SCD$ và $SDA.$ a Chứng minh tứ giác $MNEF$ là hình thoi. b Gọi $O$ là giao điểm của $AC$ và $BD.$ Chứng minh $ME$, $NF$ và $SO$ đồng tập 8 Cho tứ diện $ABCD.$ Gọi $I$, $J$ lần lượt là trung điểm của $BC$ và $BD.$ Lấy $E$ trên $AD$ $E ≠ A, D.$ a Xác định mặt cắt của tứ diện và $IJE.$ b Tìm vị trí của điểm $E$ trên $AD$ sao cho thiết diện là hình bình hành. c Tìm điều kiện của $ và vị trí $E$ trên $AD$ sao cho thiết diện là hình thoi. Chuyên đề Toán 9 luyện thi vào lớp 10Chuyên đề luyện thi vào 10 Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng nhauTìm m để hai đường thẳng song song, cắt nhau, vuông góc hoặc trùng nhau là dạng toán rất phổ biến trong các bài thi Toán 9 và các đề thi tuyển sinh vào lớp 10. Để giúp các em làm tốt dạng toán này, VnDoc gửi tới các bạn một số bài tập cơ bản và nâng cao, giúp các em ôn luyện và nắm vững các dạng toán về Tìm điều kiện của m để hai đường thẳng cắt nhau, song song, vuông góc hoặc trùng ảnh minh họa tài liệuTrên đây, VnDoc đã gửi tới các bạn một số dạng Toán Tìm m để hai đường thẳng song song, cắt nhau, trùng nhau hoặc vuông góc với nhau. Đây là tài liệu hay giúp các em nắm vững kiến thức về đường thẳng song song, cắt nhau và trùng nhau; nắm được các dạng toán khác nhau, từ đó chuẩn bị tốt cho kì thi tuyển sinh vào lớp 10 sắp khảo thêmTìm m để d cắt P tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 9/2Chứng minh đồ thị hàm số luôn đi qua một điểm cố định với mọi mTính m để phương trình bậc hai có hai nghiệm trái dấuTìm m để hệ phương trình có nghiệm duy nhấtTìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước ta như hai đường thẳng song song, chỉ yêu mà chẳng chạm được tới nhau yu1512 pov drarry Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc. Đang xem Phương trình 2 đường thẳng song song Cho hai đường thẳng y = ax + b và y’ = a’x + b’ Hai đường thẳng vuông góc với nhau = đường thẳng song song với nhau a = a’ và b≠ b’.Hai đường thẳng cắt nhau a ≠ a’.Hai đường thẳng trùng nhau a = a’ và b = b’. Trong chương trình toán lớp 9, bên cạnh phần đại số thì hình học là một phần không kém quan trọng. Hình học hỗ trợ kỹ năng tư duy toán học tượng hình. Để học tốt toán cần tìm hiểu và ghi nhớ kỹ lưỡng các công thức. Hình học trong toán 9 Toán học là môn học quan trọng, cần được đầu tư kỹ lưỡng về thời gian học. Thời lượng làm bài tập chia đều cho khoảng thời gian trong ngày. Tìm kiếm thêm tài liệu để tham khảo, tìm hiểu bài tập để làm bổ sung. Bên cạnh đó kết hợp với nâng cao năng lực tự học tìm hiểu cái mới. Giải quyết các bài khó bằng phương pháp tự học, học nhóm. Lập nhóm để giúp nhau học tập hiệu quả hơn. Kết hợp vui chơi giải trí, thư giãn đầu óc. Lớp 9 là lớp cuối cấp, chuẩn bị bước vào kì thi vào lớp 10, hẳn sẽ gặp nhiều áp lực. Xem thêm Khóa Học Xuất Nhập Khẩu Hải Phòng Được Đánh Giá Uy Tín, Khóa Học Ngắn Hạn Nhưng các em chưa cần phải quá bận tâm về vấn đề này. Phía trước còn chặng đường dài học tập. Tập trung ôn luyện để chuẩn bị cho kỳ thi chuyển cấp. Nắm vững kiến thức làm tiền đề cho các cấp học sau này. Dùng kiến thức để áp dụng trong cuộc sống hằng ngày. Bên cạnh đó, học tập không bao giờ là đủ, không chỉ môn toán mà còn những môn học khác cũng cần được chú trọng. Nền tảng khoa học để bổ trợ cho nhau. Hai đường thẳng song song Phần hình học của chương trình toán lớp 9 gồm các kiến thức đã có từ lớp trước. Được triển khai và chuyên sâu hơn. Nội dung về không gian, hình khối. Trung điểm, tia, đường thẳng, các phương pháp chứng minh. Để làm tốt bài tập cần nắm rõ các công thức tính toán tính diện tích, thể tích. Các điều kiện để bằng nhau, giao nhau, song song, đồng dạng. Về đường thẳng có các trạng thái, trường hợp như sau vuông góc với nhau, song song với nhau, cắt nhau và cuối cùng là trùng nhau. Xem thêm Mẫu Bảng Cân Đối Số Phát Sinh File Excel, Bảng Cân Đối Số Phát Sinh Hai đường thẳng được cho là vuông góc với nhau khi chỉ số a x a’= -1. Khi đó, chúng gặp nhau và tạo thành 1 góc 90 độ. Trường hợp song song là khi chỉ số a = a’ và b ≠ b’, trong trường hợp này thì 2 đường thẳng không có điểm chung và không giao nhau tại 1 số thời điểm. Khi chỉ số a ≠ a’ sẽ dẫn đến trường hợp 2 đường thẳng giao nhau. Trùng nhau ở trường hợp a = a’. Hai đường thẳng cắt nhau Như chúng tôi đã trình bày ở trên, hai đường thẳng được gọi là vuông góc khi mà tích hệ số góc của chúng bằng -1. Vậy, với chuyên đề này có những dạng toán nào. Thứ nhất, chứng minh hai đường thẳng vuông góc. Học sinh chỉ cần xác định đúng hệ số góc của đường thẳng. Đây là bước học sinh dễ mắc sai lầm nhất. Cần đưa phương trình đường thẳng về dạng tổng quát thì mới được xác định hệ số góc. Khi đã có hệ số góc của hai đường thì thực hiện tích của chúng. Nếu tích thỏa mãn bằng -1 thì chứng minh hai đường thẳng vuông góc. Dạng toán thứ hai là tìm giá trị tham số để thỏa mãn hai đường thẳng vuông góc. Các bước làm cụ thể như sau Bước 1 Xác định hệ sốgóc của hai đường thẳng theo tham sốBước 2 Lập biểu thứctích hai hệ số góc bằng -1Bước 3. Giải phương trìnhchứa tham số đã lập ở bước 2Bước 4 Kết luận và kiểmtra lại bài Haidạng toán này là dạng cơ bản thường gặp. Tuy nhiên khi lên các lớp cao hơn độkhó cũng cao hơn hẳn. Ví dụ, chứng minh hai mặt phẳng vuông góc, tìm góc tronghình khong gian,… Tóm lại, mối quan hệ giữa các đường thẳng là nền tảng cơ bản cho kiến thức nâng cao hơn. Do đó, các bạn cần nắm chắc tất cả lý thuyết liên quan đến chuyên đề này. Đồng thời cố gắng vận dụng nhanh chóng và linh hoạt để nâng cao kết quả học tập. Điều hướng bài viết 1. Vị trí tương đối của hai đường thẳng tong không gian. Trong không gian cho hai đường thẳng a và b. Khi đó có các khả năng sau a. Có một mặt phẳng chứa hai đường thẳng a và b. Lúc này ta bảo rằng a và b đồng phẳng. Khi đó, ta có các khả năng sau i a và b có một điểm chung duy nhất M. Lúc này ta nói rằng a và b cắt nhau tại M và viết hay ii a và b không có điểm chung. Lúc này ta nói rằng a và b song song với nhau và viết iii a và b trùng nhau. Ta viết b. Không có mặt phẳng nào chứa a và b. Lúc này, ta nói hai đường thẳng chéo nhau. Định nghĩa. Hai đường thẳng gọi là song song với nhau nếu chúng đồng phẳng và không có điểm chung. Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng 2. Các tính chất Định lí 1. Qua một điểm A cho trước không nằm trên đường thẳng a cho trước có duy nhất một đường thẳng b đi qua A và song song với đường thẳng a. Định lí 2. Định lý giao tuyến về ba mặt phẳng Nếu ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó hoặc đồng quy hoặc đôi một song song với nhau. Hệ quả. Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng nếu có song song với hai đường thẳng đó hoặc trùng với hai đường thẳng đó. Định lí 3. Nếu hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.

để hai đường thẳng song song